Running Pathfinder on Turing.jl models

This tutorial demonstrates how Turing can be used with Pathfinder.

We'll demonstrate with a regression example.

using AdvancedHMC, Pathfinder, Random, Turing
Random.seed!(39)

@model function regress(x, y)
    α ~ Normal()
    β ~ Normal()
    σ ~ truncated(Normal(); lower=0)
    y .~ Normal.(α .+ β .* x, σ)
end
x = 0:0.1:10
y = @. 2x + 1.5 + randn() * 0.2
model = regress(collect(x), y)
n_chains = 8
8

For convenience, pathfinder and multipathfinder can take Turing models as inputs and produce MCMCChains.Chains objects as outputs.

result_single = pathfinder(model; ndraws=1_000)
Single-path Pathfinder result
  tries: 1
  draws: 1000
  fit iteration: 22 (total: 26)
  fit ELBO: -1.95 ± 0.03
  fit distribution: Distributions.MvNormal{Float64, Pathfinder.WoodburyPDMat{Float64, LinearAlgebra.Diagonal{Float64, Vector{Float64}}, Matrix{Float64}, Matrix{Float64}, Pathfinder.WoodburyPDFactorization{Float64, LinearAlgebra.Diagonal{Float64, Vector{Float64}}, LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}, Matrix{Float64}}, LinearAlgebra.UpperTriangular{Float64, Matrix{Float64}}}}, Vector{Float64}}(
dim: 3
μ: [1.4759842060455182, 2.0060275818274436, -1.5479825354725543]
Σ: [0.0018296810848421195 -0.0002589735319675424 -0.000618345292003903; -0.0002589735319675424 5.0682815503249e-5 5.534978328717582e-5; -0.000618345292003903 5.534978328717582e-5 0.0064256358711586746]
)
result_multi = multipathfinder(model, 1_000; nruns=n_chains)
Multi-path Pathfinder result
  runs: 8
  draws: 1000
  Pareto shape diagnostic: 0.49 (good)

Here, the Pareto shape diagnostic indicates that it is likely safe to use these draws to compute posterior estimates.

When passed a DynamicPPL.Model, Pathfinder also gives access to the posterior draws in a familiar Chains object.

result_multi.draws_transformed
Chains MCMC chain (1000×3×1 Array{Float64, 3}):

Iterations        = 1:1:1000
Number of chains  = 1
Samples per chain = 1000
parameters        = α, β, σ

Summary Statistics
  parameters      mean       std      mcse    ess_bulk   ess_tail      rhat        Symbol   Float64   Float64   Float64     Float64    Float64   Float64    ⋯

           α    1.4724    0.0478    0.0015   1065.3828   913.0206    0.9994    ⋯
           β    2.0062    0.0080    0.0003   1015.5842   915.7711    1.0005    ⋯
           σ    0.2167    0.0155    0.0005    970.6707   981.1794    1.0044    ⋯
                                                                1 column omitted

Quantiles
  parameters      2.5%     25.0%     50.0%     75.0%     97.5% 
      Symbol   Float64   Float64   Float64   Float64   Float64 

           α    1.3695    1.4449    1.4716    1.5058    1.5650
           β    1.9912    2.0009    2.0062    2.0113    2.0233
           σ    0.1877    0.2055    0.2167    0.2263    0.2487

We can also use these posterior draws to initialize MCMC sampling.

init_params = collect.(eachrow(result_multi.draws_transformed.value[1:n_chains, :, 1]))
8-element Vector{Vector{Float64}}:
 [1.479212845730115, 2.004653673862574, 0.21849816572974648]
 [1.4671204662341366, 2.012072479722318, 0.20509591806923821]
 [1.4923892790853188, 2.0086214878196524, 0.228872014351796]
 [1.4791378091021459, 2.002988635852001, 0.22831136691078066]
 [1.4671474996393061, 2.0005490100751167, 0.2218504094567497]
 [1.5145012645039009, 1.9997383313646964, 0.22909663767338675]
 [1.4368178924986255, 2.008327650310952, 0.20435142557946706]
 [1.4738700123059079, 2.004895674382526, 0.21028541630912995]
chns = sample(model, Turing.NUTS(), MCMCThreads(), 1_000, n_chains; init_params, progress=false)
Chains MCMC chain (1000×15×8 Array{Float64, 3}):

Iterations        = 501:1:1500
Number of chains  = 8
Samples per chain = 1000
Wall duration     = 7.11 seconds
Compute duration  = 5.25 seconds
parameters        = α, β, σ
internals         = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size

Summary Statistics
  parameters      mean       std      mcse    ess_bulk    ess_tail      rhat      Symbol   Float64   Float64   Float64     Float64     Float64   Float64   ⋯

           α    1.4759    0.0419    0.0007   3813.7080   3621.4712    1.0032   ⋯
           β    2.0059    0.0073    0.0001   3934.7941   4375.7196    1.0023   ⋯
           σ    0.2169    0.0154    0.0002   5036.6452   4494.3731    1.0012   ⋯
                                                                1 column omitted

Quantiles
  parameters      2.5%     25.0%     50.0%     75.0%     97.5% 
      Symbol   Float64   Float64   Float64   Float64   Float64 

           α    1.3942    1.4486    1.4753    1.5038    1.5579
           β    1.9918    2.0010    2.0060    2.0108    2.0204
           σ    0.1881    0.2059    0.2161    0.2267    0.2486

We can use Pathfinder's estimate of the metric and only perform enough warm-up to tune the step size.

inv_metric = result_multi.pathfinder_results[1].fit_distribution.Σ
metric = Pathfinder.RankUpdateEuclideanMetric(inv_metric)
kernel = HMCKernel(Trajectory{MultinomialTS}(Leapfrog(0.0), GeneralisedNoUTurn()))
adaptor = StepSizeAdaptor(0.8, 1.0)  # adapt only the step size
nuts = AdvancedHMC.HMCSampler(kernel, metric, adaptor)

n_adapts = 50
n_draws = 1_000
chns = sample(
    model,
    externalsampler(nuts),
    MCMCThreads(),
    n_draws + n_adapts,
    n_chains;
    n_adapts,
    init_params,
    progress=false,
)[n_adapts + 1:end, :, :]  # drop warm-up draws
Chains MCMC chain (1000×16×8 Array{Float64, 3}):

Iterations        = 51:1:1050
Number of chains  = 8
Samples per chain = 1000
Wall duration     = 2.92 seconds
Compute duration  = 2.5 seconds
parameters        = α, β, σ
internals         = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size, is_adapt

Summary Statistics
  parameters      mean       std      mcse    ess_bulk    ess_tail      rhat      Symbol   Float64   Float64   Float64     Float64     Float64   Float64   ⋯

           α    1.4741    0.0518    0.0010   7513.5356   5475.5536    1.0005   ⋯
           β    2.0058    0.0115    0.0002   6448.2684   4316.4928    1.0013   ⋯
           σ    0.2192    0.0568    0.0015   6307.6893   4617.7063    1.0008   ⋯
                                                                1 column omitted

Quantiles
  parameters      2.5%     25.0%     50.0%     75.0%     97.5% 
      Symbol   Float64   Float64   Float64   Float64   Float64 

           α    1.3887    1.4468    1.4742    1.5028    1.5598
           β    1.9912    2.0014    2.0062    2.0110    2.0208
           σ    0.1884    0.2059    0.2159    0.2267    0.2502

See Initializing HMC with Pathfinder for further examples.